
OS/2 USB Stack development GuidelinesOS/2 USB Stack development Guidelines

Vladimirs Zinovjevs
(Vladimirs_Zinovjevs@exigengroup.lv)

Copyright Exigen 2

Summary

● OS/2 & USB stack
● Development environment
● USB stack architecture
● Interrupt processing
● Device reservation
● USB filter driver design
● New features in usbmsd driver
● Relations between usbmsd and dasd (os2&dani)
● Known problems & restrictions

Copyright Exigen 3

OS/2 & USB Stack

● Started development in 1997
● Limited driver support for USB 1.0/1.1
● Added USB 2.0 support in 2002
● Support of several class drivers:

– HID devices (mice/keyboard)

– Audio

– modem/serial convertors

– Ethernet driver

– Mass Storage devices

– Printers

Copyright Exigen 4

Development Environment

● IBM DDK build tree
● Tools

– MS C 6.0

– Masm
● Built-in debug/service tools

– Serial port printout routines (impacts timing), may
control output message level

– parameter/message processing routines

– C library routine replacements

– USB data structure processing routines
● Driver template

Copyright Exigen 5

Development Environment
● Template files

– TM_const.c constant definitons (names)

– TM_data.c data structures, initializations

– TM_idc.c IDC processor related routines

– TM_init.c initialization time routines

– TM_irq.c IRQ processing routines

– TM_segs.asm driver's header, segments

– TM_strat.c strategy router

– TM_.h master include file

– TM_extrn.h data structure external definitions

– TM_proto.h function prototypes

– TM_types driver's type defenition

Copyright Exigen 6

– Makefile
● Template can be easily build by commands

drive:\ddk\tools\nmake /a DEBUG=1

drive:\ddk\tools\nmake /a

Copyright Exigen 7

USB Stack Architecture

Class Driver Class DriverClass Driver

USBD

EHCI Host Driver

UHCI Host Driver

OHCI Host Driver

OS/2 Interface

Copyright Exigen 8

USB Stack Architecture - Interfaces

– External interfaces
• Mass storage device adapter driver IORB interface
• Multimedia interface
• NDIS 2.04 interface
• Serial/parallel interfaces
• mice/keyboard USB/regular device IDC interface

– Internal (interstack) interface

• IDC based

• Similar to IOCTL interface

• asynchronuous/synchronuous requests

Copyright Exigen 9

USB Stack Architecture - Interfaces

Function Type Source
REGISTER sync class
SETCONF async class
SETINTF async class
PRCIRQ sync host
ACCIO async class
CANCEL sync class
CLRSTALL async class
CMPL_INI sync class
APM sync USBD
RESET_PORT sync class
IDLE sync USBD
CANCEL_STATE sync class

Copyright Exigen 10

USB Stack Architecture - Interfaces

● CMPL_INI
• sent to USBD to start host initialization when

adapter driver has received notification from
kernel that system is ready to switch from BIOS
support to native drivers

● IDLE
• Sent once after initial device enumeration has

been completed

Copyright Exigen 11

USB Stack Architecture - Interfaces

● RESET_PORT
Last resort to make port working, device address
may change as enumeration will be executed again
void ResetPort(DeviceList *const pDevice)
{
 USBCancel cancelRequest; // USB Cancel Request Block
 RP_GENIOCTL rp_USBReq; // USBD Request Packet

 #ifdef DEBUG
 if (!pDevice)
 dsPrint(DBG_CRITICAL, "MSD: reset port !pDevice\r\n");
 #endif
 //Check if device is connected
 if (!pDevice->pDeviceInfo) {
 pDevice->errorCode = IOERR_UNIT_NOT_READY;
 return;
 }
 cancelRequest.controllerId = pDevice->pDeviceInfo->ctrlID;
 cancelRequest.deviceAddress = pDevice->pDeviceInfo->deviceAddress;
 cancelRequest.endPointId = 0;
 #ifdef DEBUG
 dsPrint2(DBG_CRITICAL, "MSD: reset port %x %x\r\n",
 cancelRequest.controllerId, cancelRequest.deviceAddress);
 #endif
 setmem((PSZ)&rp_USBReq, 0, sizeof(rp_USBReq));
 rp_USBReq.rph.Cmd = CMDGenIOCTL;
 rp_USBReq.Category = USB_IDC_CATEGORY_USBD;
 rp_USBReq.Function = USB_IDC_FUNCTION_RESET_PORT;
 rp_USBReq.ParmPacket = (PVOID)&cancelRequest;
 USBCallIDC(gpUSBDIDC, gdsUSBIDC, (PRP_GENIOCTL)&rp_USBReq);
}

Copyright Exigen 12

● CANCEL_STATE

In addition to regular cancel request returns endpoint /request
state.

void CancelRequestWithState(USHORT prtIndex, USHORT endPoint) {

 USBCancel rb; // USB Cancel Request Block

 RP_GENIOCTL rp; // IOCtl Request Packet to USBD

 if (gPRT[prtIndex].pDeviceInfo) {

 rb.controllerId = gPRT[prtIndex].pDeviceInfo->ctrlID;

 rb.deviceAddress = gPRT[prtIndex].pDeviceInfo->deviceAddress;

 rb.endPointId = (UCHAR)endPoint;

 setmem((PSZ)&rp, 0, sizeof(rp));

 rp.rph.Cmd = CMDGenIOCTL;

 rp.Category = USB_IDC_CATEGORY_USBD;

 rp.Function = USB_IDC_FUNCTION_CANCEL_STATE;

 rp.ParmPacket = (PVOID)&rb;

 USBCallIDC(gpUSBDIDC, gdsUSBDIDC, (PRP_GENIOCTL)&rp);

 if (rp.rph.Status == USB_IDC_RC_WRONGFUNC)

 CancelRequests(prtIndex, endPoint);

 }

}

USB Stack Architecture - InterfacesUSB Stack Architecture - Interfaces

Copyright Exigen 13

USB Stack Architecture - InterfacesUSB Stack Architecture - Interfaces

do {

 if (!(gPRT[prtIndex].wFlags & STOP_TRANSMIT)) WriteData (prtIndex);

 do {

 awakeC = DevHelp_ProcBlock((ULONG)(PUCHAR)gPRT[prtIndex].pRPWrite[CURRENT],

 (pRP->Unit)? // COM# : $USBPRT in milliseconds

 (ULONG)((gDCB[pRP->Unit-1].dcb.usWriteTimeout + 1)*10) :

 gPRT[prtIndex].dwTO[WRITE_IDLE_TO], WAIT_IS_INTERRUPTABLE);

 } while (awakeC != WAIT_TIMED_OUT && gPRT[prtIndex].pRPWrite[CURRENT]->rph.Status == 0);

 if (awakeC == WAIT_TIMED_OUT) {

 CancelRequestWithState(prtIndex, gPRT[prtIndex].writeEndpoint);

 DevHelp_ProcBlock((ULONG)(PUCHAR)gPRT[prtIndex].pRPWrite[CURRENT], 1000, WAIT_IS_INTERRUPTABLE);

 if ((pRP->Unit == 0 && gPRT[prtIndex].bInfinRetry == TRUE) ||

 (pRP->Unit > 0 && gDCB[pRP->Unit-1].dcb.fbTimeout & F3_W_INF_TO))

 { // to try to write the data to the USB printer

 continue;

 } else {

 gPRT[prtIndex].pRPWrite[CURRENT]->rph.Status |= STERR | ERROR_I24_WRITE_FAULT; break;

 }

 } else if (gPRT[prtIndex].wFlags & (FLUSH_OUT_INPROGRESS | WRITE_DATA_ERROR)) {

 gPRT[prtIndex].pRPWrite[CURRENT]->rph.Status &= ~STBUI; break;

 } else gPRT[prtIndex].pRPWrite[CURRENT]->rph.Status = 0;

 } while (gPRT[prtIndex].wWCount < gPRT[prtIndex].wWReqCount);

Copyright Exigen 14

USB Stack Architecture - InterfacesUSB Stack Architecture - Interfaces

● APM

Power management notification
switch (pRP_GENIOCTL->Category)

 {

 case USB_IDC_CATEGORY_CLASS:

 switch (pRP_GENIOCTL->Function) {

 case USB_IDC_FUNCTION_APM:

 APMService (pRP_GENIOCTL);

 break; //LR0619end

 }

 break;

 }

static void APMService (PRP_GENIOCTL pRP) {

 ULONG apmState = ((USBAPMNotification FAR *)pRP->ParmPacket)->apmState;

 if (apmState == USB_APM_SUSPEND) {

 } else if (apmState == USB_APM_RESUME) {

 }

}

Copyright Exigen 15

USB Stack Architecture - TricksUSB Stack Architecture - Tricks

void CancelRequests (USHORT prtIndex, USHORT endPoint) {

 USBCancel rb; // USB Cancel Request Block

 RP_GENIOCTL rp; // IOCtl Request Packet to USBD

 if (gPRT[prtIndex].pDeviceInfo) {

 rb.controllerId = gPRT[prtIndex].pDeviceInfo->ctrlID;

 rb.deviceAddress = gPRT[prtIndex].pDeviceInfo->deviceAddress;

 rb.endPointId = (UCHAR)endPoint;

 setmem((PSZ)&rp, 0, sizeof(rp));

 rp.rph.Cmd = CMDGenIOCTL;

 rp.Category = USB_IDC_CATEGORY_USBD;

 rp.Function = USB_IDC_FUNCTION_CANCEL;

 rp.ParmPacket = (PVOID)&rb;

 USBCallIDC (gpUSBDIDC, gdsUSBDIDC, (PRP_GENIOCTL)&rp);

 }

}

Copyright Exigen 16

USB Stack Architecture - TricksUSB Stack Architecture - Tricks

#define MAX_BULK_HS_BUFFSIZE 65535

#define MAX_BULK_BUFFSIZE 16384

 if (pCurrDevice->pDeviceInfo->SpeedDevice == USB_HIGH_DEV_SPEED) {

 // for USB20 driver can send/receive 3*20kb bytes simultaneously

 if (currBuffLen > MAX_BULK_HS_BUFFSIZE) *length = 61440; // it 3 transfer descriptors

 else {

 if (scatGatIndex != pCurrDevice->cSGList - 1) {

 // adjust data length to be equal maxPacketSize*n, n = 1,2,..

 // otherwise USB device will stall request

 *length = (USHORT)(currBuffLen - (currBuffLen % HS_MAX_PACKET_BULK_SIZE));

 } else // driver sends all data if it is a last item in a gather list

 *length = (USHORT)currBuffLen;

 }

 } else { // for USB11 driver can send/receive 16kb bytes simultaneously

 if (currBuffLen >= (ULONG)gBuffSize) *length = gBuffSize;

 else {

 if (scatGatIndex != pCurrDevice->cSGList - 1) {

 // adjust data length to be equal maxPacketSize*n, n = 1,2,..

 // otherwise USB device will stall request

 *length = (USHORT)(currBuffLen - (currBuffLen % FS_MAX_PACKET_BULK_SIZE));

 } else // driver sends all data if it is a last item in a gather list

 *length = (USHORT)currBuffLen;

 }

 }

Copyright Exigen 17

USB Stack Architecture - TricksUSB Stack Architecture - Tricks

● You shoud merge buffers from scatter gather list into one
buffer and send it to USBD.

Class Driver Host Driver

1uF

milisecond=8uf

irq

Class Driver

Several ms

result

Copyright Exigen 18

Interrupt Processing
● Limited processing at IRQ time in host drivers
● Finalizing during task time, calls initiating driver directly
● Original request structure may not match 1-1 to one

returned during IRQ (hostID/address/endpoint/requestdata
fields are always restored)

● Transfer status are reflected in request's status field and
buffer length fields

● New requests are/may be initiated during IRQ notification
calls

● Class drivers (also other ones) should not sent any
requests to USBD driver during interrupt time (like from
timer callback routines)

Copyright Exigen 19

Device Reservation

● Based on configuration selection

– Must be set as soon as possible during device attach
notification process

– Configuration must be set via SETCONF call to USBD
● device/interface sharing only between friendly drivers

Copyright Exigen 20

USB Filter Driver
● Uses the same interfaces as regular driver
● Filter nature only when accepting device for service – may

set filter driver IDC/DS addresses as per device basis
● May send requests to USBD driver using special command

(CMDIOCTLW instead of CMDGenIOCTL) to bypass
filtering

● After registration filter is called instead of host driver for
each request, except for REGISTER /PRCIRQ / CMPL_INI

– May update commands/data to be sent to device

– May replace one request with one or more other
requests to implement support for non-standard devices

Copyright Exigen 21

USB Filter Driver

 - May update IRQ processing IDC/DS address
pRB->usbDS = GetDS();

pRB->usbIDC = (PUSBIDCEntry)&FL_idc;

● Post request data processing during IRQ
● Possible timeout problems when replacing single request

with several for devices served by drivers that support
time-outs for requests (like MSD driver)

Copyright Exigen 22

USB Filter Driver

Class Driver

USBD

Host Driver

Filter Driver

Copyright Exigen 23

USB MSD Driver

● Initial driver supports only first Logical Unit Number 0
● Added multiple LUN support in 2004
● Fixed several problems with device geometry detection (for

BOT devices and for UFI devices):
fixed CBI-NI protocol support

fixed format for UFI

ignored incorrect CHS geometry
● Added USB HDD support. The key FIXED_DISKS is ignored

now.
● Added possibility to work with USB CDRW devices. A filter

driver must be implemented.
● ModeSense10 command can be avoided. (/MS10_OFF)
● Supports non-512 bytes/sector media with Dani filter.

Copyright Exigen 24

USB MSD & DASD Drivers

The following dasd drivers exists:
● Os2dasd for MCP and ACP
● Os2dasd for Warp4
● Danidasd
At present moment the latest fixes for USB mass storage

devices have been inserted only in os2dasd for MCP:
● Eject command can be used for hard drives.
● Driver supports USB HDD with large media
● Can detect partitions created by non-OS2 OS.
● Can work with media formatted by another OS.
● Supports non-OS2 oem names for PRM.

Copyright Exigen 25

There are the following restrictions in danidasd and os2dasd
for Warp4:

● New key CHS can be used. MSD calculates CHS geometry
from device geometry. This key helps to support USB drives
with capacity more than 40GB.

● Eject command must be rewritten.

Copyright Exigen 26

Problems

Host problems:
● Does not support physically discontinuous buffers.
● Does not support zero length transfers. It may be a critical

point for some protocols.

USBD problems:
● Interrupt processing is incorrect if short packets are in use

(more than one transfer descriptor).

Class drivers' problems:

