exi1gen

0OS/2 USB Stack development Guidelines

Vladimirs Zinovjevs
(Vladimirs_Zinovjevs@exigengroup.lv)

ex1gen
Summary

* 0OS/2 & USB stack

* Development environment

* USB stack architecture

* |nterrupt processing

* Device reservation

 USB filter driver design

* New features in usbmsd driver

* Relations between usbmsd and dasd (os2&dani)
* Known problems & restrictions

Copyright Exigen

exigen

0S/2 & USB Stack

Started development in 1997

* Limited driver support for USB 1.0/1.1
Added USB 2.0 support in 2002

* Support of several class drivers:

— HID devices (mice/keyboard)

— Audio

— modem/serial convertors

— Ethernet driver

— Mass Storage devices

— Printers

Copyright Exigen

exigen
Development Environment

IBM DDK build tree
* Tools
- MSC6.0
— Masm
* Built-in debug/service tools

— Serial port printout routines (impacts timing), may
control output message level

— parameter/message processing routines

— C library routine replacements

— USB data structure processing routines
* Driver template

Copyright Exigen

exigen
Development Environment

* Template files

— TM_const.c constant definitons (names)

— TM_data.c data structures, initializations
— TM_idc.c IDC processor related routines
— TM_init.c Initialization time routines

— TM_irg.c IRQ processing routines

— TM_segs.asm driver's header, segments

— TM_strat.c strategy router

— TM _.h master include file

— TM_extrn.h data structure external definitions
— TM_proto.h function prototypes

— TM_types driver's type defenition

Copyright Exigen

exigen

— Makefile

* Template can be easily build by commands
drive:\ddk\tools\nmake /a DEBUG=1
drive:\ddk\tools\nmake /a

Copyright Exigen

2 _ .
exigen USB Stack Architecture

Copyright Exigen

/ .
exigen USB Stack Architecture - Interfaces

— External interfaces
* Mass storage device adapter driver IORB interface
* Multimedia interface
 NDIS 2.04 interface
« Serial/parallel interfaces
* mice/keyboard USB/regular device IDC interface

— Internal (interstack) interface
« IDC based
o Similar to IOCTL interface
e asynchronuous/synchronuous requests

Copyright Exigen

exigen

USB Stack Architecture - Interfaces

Function
REGISTER
SETCONF
SETINTF
PRCIRQ
ACCIO
CANCEL
CLRSTALL
CMPL_INI
APM
RESET PORT
IDLE
CANCEL_ STATE

Copyright Exigen

Type
sync
async
async
sync
async
sync
async
sync
sync
sync
sync
sync

Source

class
class
class
host

class
class
class
class
USBD
class
USBD
class

/ .
exigen USB Stack Architecture - Interfaces

e CMPL_INI

e sent to USBD to start host initialization when
adapter driver has received notification from
kernel that system is ready to switch from BIOS
support to native drivers

* |IDLE

e Sent once after initial device enumeration has
been completed

Copyright Exigen 10

/ .
exigen USB Stack Architecture - Interfaces

* RESET _PORT
Last resort to make port working, device address
may change as enumeration will be executed again

void ResetPort(DeviceList *const pDevice)

{
USBCancel cancelRequest; // USB Cancel Request Block
RP_GENIOCTL rp_USBReq; // USBD Request Packet

#ifdef DEBUG
if (IpDevice)

dsPrint(DBG_CRITICAL, "MSD: reset port !pDevice\r\n");
#endif
//ICheck if device is connected
if ('pDevice->pDevicelnfo) {

pDevice->errorCode = IOERR_UNIT_NOT_READY;

return;
}
cancelRequest.controllerld = pDevice->pDevicelnfo->ctrlID;
cancelRequest.deviceAddress = pDevice->pDevicelnfo->deviceAddress;
cancelRequest.endPointld = 0O;
#ifdef DEBUG
dsPrint2(DBG_CRITICAL, "MSD: reset port %x %x\r\n",

cancelRequest.controllerld, cancelRequest.deviceAddress);

#endif
setmem((PS2z)&rp_USBReq, 0, sizeof(rp_USBReq));
rp_USBReq.rph.Cmd = CMDGenIOCTL;
rp_USBReq.Category = USB_IDC_CATEGORY_USBD;
rp_USBReg.Function = USB_IDC_FUNCTION_RESET_PORT;
rp_USBReq.ParmPacket = (PVOID)&cancelRequest;
USBCalllDC(gpUSBDIDC, gdsUSBIDC, (PRP_GENIOCTL)&rp_USBReq);

Copyright Exigen

exigen USB Stack Architecture - Interfaces

e CANCEL_STATE

In addition to regular cancel request returns endpoint /request
state.

void CancelRequestWithState(USHORT prtindex, USHORT endPoint) {

USBCancel rb; // USB Cancel Request Block

RP_GENIOCTL rp; // IOCtl Request Packet to USBD

if (gPRT[prtindex].pDevicelnfo) {
rb.controllerld = gPRT[prtindex].pDevicelnfo->ctrlID;
rb.deviceAddress = gPRT[prtIndex].pDevicelnfo->deviceAddress;
rb.endPointld = (UCHAR)endPoint;
setmem((PSZz)&rp, 0, sizeof(rp));
rp.rph.Cmd = CMDGenIOCTL;
rp.Category = USB_IDC_CATEGORY_USBD;
rp.Function =USB IDC_FUNCTION_CANCEL_STATE;
rp.ParmPacket = (PVOID)&rb;
USBCalllDC(gpUSBDIDC, gdsUSBDIDC, (PRP_GENIOCTL)&rp);
if (rp.rph.Status == USB_IDC_RC_WRONGFUNC)

CancelRequests(prtindex, endPoint);

Copyright Exigen

7 .
exigen USB Stack Architecture - Interfaces

do {
if ({(gPRT[prtindex].wFlags & STOP_TRANSMIT)) WriteData (prtindex);
do {
awakeC = DevHelp_ProcBlock((ULONG)(PUCHAR)gPRT([prtindex].pRPWrite[CURRENT],
(pRP->Unit)? // COM# : $USBPRT in milliseconds
(ULONG)((gDCB[pRP->Unit-1].dcb.usWriteTimeout + 1)*10) :
gPRT[prtindex].dwTO[WRITE_IDLE_TO], WAIT_IS_INTERRUPTABLE);
} while (awakeC !'= WAIT_TIMED_OUT && gPRT[prtindex].pRPWrite[CURRENT]->rph.Status == 0);
if (awakeC == WAIT_TIMED_OUT) {
CancelRequestWithState(prtlndex, gPRT[prtlndex].writeEndpoint);
DevHelp_ProcBlock((ULONG)(PUCHAR)gPRT[prtindex].pRPWrite[CURRENT], 1000, WAIT_IS_INTERRUPTABLE);
if (pPRP->Unit == 0 && gPRT[prtIndex].bInfinRetry == TRUE) ||
(pPRP->Unit > 0 && gDCB[pRP->Unit-1].dcb.fbTimeout & F3_W_INF_TQO))
{ /Il to try to write the data to the USB printer
continue;
}else {
gPRT[prtindex].pRPWrite[CURRENT]->rph.Status |= STERR | ERROR_I24_WRITE_FAULT; break;
}
} else if (gPRT[prtindex].wFlags & (FLUSH_OUT_INPROGRESS | WRITE_DATA_ERROR)) {
gPRT[prtindex].pRPWrite[CURRENT]->rph.Status &= ~STBUI; break;
} else gPRT[prtindex].pRPWrite[CURRENT]->rph.Status = 0;
} while (gPRT[prtindex].wWCount < gPRT[prtindex].wWReqCount);

Copyright Exigen

13

7 .
exigen USB Stack Architecture - Interfaces

* APM
Power management notification

switch (pPRP_GENIOCTL->Category)
{
case USB_IDC_CATEGORY_CLASS:
switch (pRP_GENIOCTL->Function) {
case USB_IDC_FUNCTION_APM:
APMService (pRP_GENIOCTL);
break; //LR0619end
}

break;

}

static void APMService (PRP_GENIOCTL pRP) {
ULONG apmsState = ((USBAPMNotification FAR *)pRP->ParmPacket)->apmState;
if (apmState == USB_APM_SUSPEND) {
} else if (apmState == USB_APM_RESUME) {
}
}

Copyright Exigen

14

/] . .
exigen USB Stack Architecture - Tricks

void CancelRequests (USHORT prtindex, USHORT endPoint) {
USBCancel rb; // USB Cancel Request Block
RP_GENIOCTL rp; // IOCtl Request Packet to USBD
if (JPRT[prtindex].pDevicelnfo) {
rb.controllerld = gPRT[prtindex].pDevicelnfo->ctrliD;
rb.deviceAddress = gPRT[prtindex].pDevicelnfo->deviceAddress;
rb.endPointld = (UCHAR)endPoint;
setmem((PSZ)&rp, 0, sizeof(rp));
rp.rph.Cmd = CMDGenIOCTL;
rp.Category = USB_IDC_CATEGORY_USBD;
rp.Function = USB_IDC_FUNCTION_CANCEL;
rp.ParmPacket = (PVOID)&rb;
USBCalllDC (gpUSBDIDC, gdsUSBDIDC, (PRP_GENIOCTL)&rp);

Copyright Exigen

15

/] . .
exigen USB Stack Architecture - Tricks

#define MAX_BULK_HS_BUFFSIZE 65535
#define MAX_BULK_BUFFSIZE 16384
if (pCurrDevice->pDevicel nfo->SpeedDevice == USB_HIGH_DEV_SPEED) {
/l for USB20 driver can send/receive 3*20kb bytes simultaneously
if (currBuffLen > MAX_BULK_HS BUFFSIZE) *length = 61440; // it 3 transfer descriptors
else {
if (scatGatindex != pCurrDevice->cSGList - 1) {
/[adjust data length to be equal maxPacketSize*n, n =1,2,..
/I otherwise USB device will stall request
*length = (USHORT)(currBuffLen - (currBuffLen % HS_MAX_PACKET_BULK_SIZE));
} else // driver sends all data if it is a last item in a gather list
*length = (USHORT)currBuffLen;
}
}else { //for USB11 driver can send/receive 16kb bytes simultaneously
if (currBuffLen >= (ULONG)gBuffSize) *length = gBuffSize;
else {
if (scatGatindex != pCurrDevice->cSGList - 1) {
/I adjust data length to be equal maxPacketSize*n, n=1,2,..
/I otherwise USB device will stall request
*length = (USHORT)(currBuffLen - (currBuffLen % FS_MAX_PACKET_BULK_SIZE));
} else // driver sends all data if it is a last item in a gather list
*length = (USHORT)currBuffLen;

Copyright Exigen

16

- . .
ex1gen USB Stack Architecture - Tricks

T

* You shoud merge buffers from scatter gather list into one
buffer and send it to USBD.

Severd ms

irq

Copyright Exigen

7

exigen

Interrupt Processing

Limited processing at IRQ time in host drivers
Finalizing during task time, calls initiating driver directly

Original request structure may not match 1-1 to one
returned during IRQ (hostiD/address/endpoint/requestdata
flelds are always restored)

Transfer status are reflected in request's status field and
buffer length fields

New requests are/may be initiated during IRQ notification
calls

Class drivers (also other ones) should not sent any
requests to USBD driver during interrupt time (like from
timer callback routines)

Copyright Exigen 18

exigen
Device Reservation

* Based on configuration selection

— Must be set as soon as possible during device attach
notification process

— Configuration must be set via SETCONF call to USBD
* devicel/interface sharing only between friendly drivers

Copyright Exigen

19

7

exigen

USB Filter Driver

Uses the same interfaces as reqgular driver

Filter nature only when accepting device for service — may
set filter driver IDC/DS addresses as per device basis

May send requests to USBD driver using special command
(CMDIOCTLW instead of CMDGenlOCTL) to bypass
filtering

After registration filter is called instead of host driver for
each request, except for REGISTER /PRCIRQ / CMPL_INI

— May update commands/data to be sent to device

— May replace one request with one or more other
requests to implement support for non-standard devices

Copyright Exigen

20

exigen

USB Filter Driver

- May update IRQ processing IDC/DS address

pPRB->usbDS = GetDS();
pRB->usbIDC = (PUSBIDCENtry)&FL _idc;

* Post request data processing during IRQ

* Possible timeout problems when replacing single request
with several for devices served by drivers that support
time-outs for requests (like MSD driver)

Copyright Exigen

21

(—‘:){1gi€:r|n y USB Filter Driver
I

Copyright Exigen 22

exigen

USB MSD Driver

* [|nitial driver supports only first Logical Unit Number O
* Added multiple LUN support in 2004

* Fixed several problems with device geometry detection (for
BOT devices and for UFI devices):
fixed CBI-NI protocol support
fixed format for UFI
ignored incorrect CHS geometry

* Added USB HDD support. The key FIXED_ DISKS is ignhored
now.

* Added possibility to work with USB CDRW devices. A filter
driver must be implemented.

* ModeSensel0 command can be avoided. (/MS10_ OFF)
* Supports non-512 bytes/sector media with Dani filter.

Copyright Exigen 23

exigen

USB MSD & DASD Drivers

The following dasd drivers exists:
* (Os2dasd for MCP and ACP

* (Os2dasd for Warp4

* Danidasd

At present moment the latest fixes for USB mass storage
devices have been inserted only in os2dasd for MCP:

* Eject command can be used for hard drives.

* Driver supports USB HDD with large media

* (Can detect partitions created by non-OS2 OS.
* Can work with media formatted by another OS.
* Supports non-0OS2 oem names for PRM.

Copyright Exigen 24

exigen

There are the following restrictions in danidasd and os2dasd
for Warp4:

* New key CHS can be used. MSD calculates CHS geometry
from device geometry. This key helps to support USB drives
with capacity more than 40GB.

* Eject command must be rewritten.

Copyright Exigen

25

exigen
Problems

Host problems:
* Does not support physically discontinuous buffers.

* Does not support zero length transfers. It may be a critical
point for some protocols.

USBD problems:

* Interrupt processing is incorrect if short packets are in use
(more than one transfer descriptor).

Class drivers' problems:

Copyright Exigen 26

